Tailoring the negative-refractive-index metamaterials composed of semiconductor-metal-semiconductor gold ring/disk cavity heptamers to support strong Fano resonances in the visible spectrum.
نویسندگان
چکیده
In this study, we investigated numerically the plasmon response of a planar negative-index metamaterial composed of symmetric molecular orientations of Au ring/disk nanocavities in a heptamer cluster. Using the plasmon hybridization theory and considering the optical response of an individual nanocluster, we determined the accurate geometrical sizes for a ring/disk nanocavity heptamer. It is shown that the proposed well-organized nanocluster can be tailored to support strong and sharp Fano resonances in the visible spectrum. Surrounding and filling the heptamer clusters by various metasurfaces with different chemical characteristics, and illuminating the structure with an incident light source, we proved that this configuration reflects low losses and isotropic features, including a pronounced Fano dip in the visible spectrum. Technically, employing numerical methods and tuning the geometrical sizes of the structure, we tuned and induced the Fano dip in the visible range, while the dark and bright plasmon resonance extremes are blueshifted to shorter wavelengths dramatically. Considering the calculated transmission window, we quantified the effective refractive index for the structure, while the substance of the substrate material was varied. Using Si, GaP, and InP semiconductors as substrate materials, we calculated and compared the corresponding figure of merit (FOM) for different regimes. The highest possible FOM was obtained for the GaP-Au-GaP negative-refractive-index metamaterial composed of ring/disk nanocavity heptamers as 62.4 at λ∼690 nm (arounnd the position of the Fano dip). Despite the outstanding symmetric nature of the suggested heptamer array, we provided sharp Fano dips by the appropriate tuning of the geometrical and chemical parameters. This study yields a method to employ ring/disk nanocavity heptamers as a negative-refractive-index metamaterial in designing highly accurate localization of surface plasmon resonance sensing devices and biochemical sensors.
منابع مشابه
Fano-like resonances in split concentric nanoshell dimers in designing negative-index metamaterials for biological-chemical sensing and spectroscopic purposes.
In this study, we investigated numerically the plasmon response of a dimer configuration composed of a couple of split and concentric Au nanoshells in a complex orientation. We showed that an isolated composition of two concentric split nanoshells could be tailored to support strong plasmon resonant modes in the visible wavelengths. After determining the accurate geometric dimensions for the pr...
متن کاملSemiconductor-Metal-Semiconductor Core-Multishell Nanowires as Negative-Index Metamaterial in Visible Domain
Negative-index metamaterials (NIMs) exhibiting both negative refraction as well as phase reversal, particularly in the visible range, have drawn considerable attention in the past decade due to their potential applications in cloaking, sensing and sub-diffraction-limit imaging. NIM are often realized by arraying sub-wavelength nanostructures (meta-atoms) exhibiting spectrally overlapped magneti...
متن کاملNegative refractive index in artificial metamaterials.
We discuss optical constants in artificial metamaterials showing negative magnetic permeability and electric permittivity and suggest a simple formula for the refractive index of a general optical medium. Using the effective-field theory, we calculate the effective permeability and the refractive index of nanofabricated media composed of pairs of identical gold nanopillars with magnetic respons...
متن کاملFano resonances in THz metamaterials composed of continuous metallic wires and split ring resonators.
We demonstrate theoretically and experimentally that Fano resonances can be obtained in terahertz metamaterials that are composed of periodic continuous metallic wires dressed with periodic split ring resonators. An asymmetric Fano lineshape has been found in a narrow frequency range of the transmission curve. By using a transmission line combined with lumped element model, we are able to not o...
متن کاملRefractive Index Sensor Based on Fano Resonances in Metal-Insulator-Metal Waveguides Coupled with Resonators
A surface plasmon polariton refractive index sensor based on Fano resonances in metal-insulator-metal (MIM) waveguides coupled with rectangular and ring resonators is proposed and numerically investigated using a finite element method. Fano resonances are observed in the transmission spectra, which result from the coupling between the narrow-band spectral response in the ring resonator and the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the Optical Society of America. A, Optics, image science, and vision
دوره 32 2 شماره
صفحات -
تاریخ انتشار 2015